A Beurling-helson Type Theorem for Modulation Spaces

نویسندگان

  • KASSO A. OKOUDJOU
  • K. A. OKOUDJOU
چکیده

We prove a Beurling-Helson type theorem on modulation spaces. More precisely, we show that the only C changes of variables that leave invariant the modulation spaces M(R) are affine functions on R. A special case of our result involving the Sjöstrand algebra was considered earlier by A. Boulkhemair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes of Variables in Modulation and Wiener Amalgam Spaces

In this paper various properties of global and local changes of variables as well as properties of canonical transforms are investigated on modulation and Wiener amalgam spaces. We establish several relations among localisations of modulation and Wiener amalgam spaces and, as a consequence, we obtain several versions of local and global Beurling–Helson type theorems. We also establish a number ...

متن کامل

On the Beurling–Lax theorem for domains with one hole

We consider pure subnormal operators T of the type studied in Carlsson, 2011, with the additional requirement that σ(T ) has one hole. If ind (T − λ0) = −n for some λ0 and n ∈ N, we show that the operator can be decomposed as T = ⊕k=1Tk, where each Tk satisfies ind (T − λ0) = −1, thus extending the classical Beurling–Lax theorem (in which σ(T ) is the unit disc). We also provide a set of unitar...

متن کامل

Variations on a theme of Beurling

Interpretations of the Beurling–Lax–Halmos Theorem on invariant subspaces of the unilateral shift are explored using the language of Hilbert modules. Extensions and consequences are considered in both the one and multivariate cases with an emphasis on the classical Hardy, Bergman and Drury–Arveson spaces.

متن کامل

Quantitative aspects of the Beurling–Helson theorem: Phase functions of a special form

We consider the space A(T), d ≥ 2, of absolutely convergent Fourier series on the torus T. The norm on A(T) is naturally defined by ‖f‖A = ‖f̂‖l1 , where f̂ is the Fourier transform of a function f . For phase functions φ of a certain special form, we obtain lower bounds for the A -norms of the exponentials e as λ → ∞. In particular, we show that if φ(x, y) = a(x)|y| for |y| ≤ π, where a ∈ A(T) i...

متن کامل

(Fixed Point Type Theorem In S-Metric Spaces (II

In this paper, we prove some common fixed point results for two self mappingsf and g on S-metric space such that f is a g.w.c.m with respect to g.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007